Dépôt officiel du code source de l'ERP OpenConcerto
Blame | Last modification | View Log | RSS feed
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
*
* Copyright 2011-2019 OpenConcerto, by ILM Informatique. All rights reserved.
*
* The contents of this file are subject to the terms of the GNU General Public License Version 3
* only ("GPL"). You may not use this file except in compliance with the License. You can obtain a
* copy of the License at http://www.gnu.org/licenses/gpl-3.0.html See the License for the specific
* language governing permissions and limitations under the License.
*
* When distributing the software, include this License Header Notice in each file.
*/
package org.openconcerto.utils;
import java.util.Arrays;
import java.util.Collection;
/**
* A type-specific hash set with with a fast, small-footprint implementation.
*
* <p>
* Instances of this class use a hash table to represent a set. The table is filled up to a
* specified <em>load factor</em>, and then doubled in size to accommodate new entries. If the table
* is emptied below <em>one fourth</em> of the load factor, it is halved in size; however, the table
* is never reduced to a size smaller than that at creation time: this approach makes it possible to
* create sets with a large capacity in which insertions and deletions do not cause immediately
* rehashing. Moreover, halving is not performed when deleting entries from an iterator, as it would
* interfere with the iteration process.
*
* <p>
* Note that {@link #clear()} does not modify the hash table size. Rather, a family of
* {@linkplain #trim() trimming methods} lets you control the size of the table; this is
* particularly useful if you reuse instances of this class.
*
*/
public class IntHashSet {
static final float DEFAULT_LOAD_FACTOR = 0.75f;
private static final int DEFAULT_INITIAL_SIZE = 16;
/** 2<sup>32</sup> · φ, φ = (√5 − 1)/2. */
private static final int INT_PHI = 0x9E3779B9;
/** The reciprocal of {@link #INT_PHI} modulo 2<sup>32</sup>. */
private static final int INV_INT_PHI = 0x144cbc89;
/** The array of keys. */
protected transient int[] key;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this set contains the null key. */
protected transient boolean containsNull;
/**
* The current table size. Note that an additional element is allocated for storing the null
* key.
*/
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** We never resize below this threshold, which is the construction-time {#n}. */
protected final transient int minN;
/** Number of entries in the set (including the null key, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
/**
* Creates a new hash set.
*
* <p>
* The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
*/
public IntHashSet(final int expected, final float f) {
if (f <= 0 || f >= 1)
throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1");
if (expected < 0)
throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
minN = n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = new int[n + 1];
}
/**
* Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash set.
*/
public IntHashSet(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements and
* {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public IntHashSet() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param f the load factor.
*/
public IntHashSet(final Collection<? extends Integer> c, final float f) {
this(c.size(), f);
addAll(c);
}
/**
* Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given
* collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
*/
public IntHashSet(final Collection<? extends Integer> c) {
this(c, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
*/
public IntHashSet(final int[] a, final int offset, final int length, final float f) {
this(length < 0 ? 0 : length, f);
ensureOffsetLength(a.length, offset, length);
for (int i = 0; i < length; i++)
add(a[offset + i]);
}
/**
* Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with
* the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public IntHashSet(final int[] a, final int offset, final int length) {
this(a, offset, length, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash set copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param f the load factor.
*/
public IntHashSet(final int[] a, final float f) {
this(a, 0, a.length, f);
}
/**
* Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying the
* elements of an array.
*
* @param a an array to be copied into the new hash set.
*/
public IntHashSet(final int[] a) {
this(a, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new empty hash set.
*
* @return a new empty hash set.
*/
public static IntHashSet of() {
return new IntHashSet();
}
/**
* Returns the least power of two smaller than or equal to 2<sup>30</sup> and larger than or
* equal to {@code Math.ceil(expected / f)}.
*
* @param expected the expected number of elements in a hash table.
* @param f the load factor.
* @return the minimum possible size for a backing array.
* @throws IllegalArgumentException if the necessary size is larger than 2<sup>30</sup>.
*/
public static int arraySize(final int expected, final float f) {
final long s = Math.max(2, nextPowerOfTwo((long) Math.ceil(expected / f)));
if (s > (1 << 30))
throw new IllegalArgumentException("Too large (" + expected + " expected elements with load factor " + f + ")");
return (int) s;
}
/**
* Returns the maximum number of entries that can be filled before rehashing.
*
* @param n the size of the backing array.
* @param f the load factor.
* @return the maximum number of entries before rehashing.
*/
public static int maxFill(final int n, final float f) {
/*
* We must guarantee that there is always at least one free entry (even with pathological
* load factors).
*/
return Math.min((int) Math.ceil(n * f), n - 1);
}
/**
* Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the given
* element.
*
* @param e the element that the returned set will contain.
* @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing
* {@code e}.
*/
public static IntHashSet of(final int e) {
IntHashSet result = new IntHashSet(1, DEFAULT_LOAD_FACTOR);
result.add(e);
return result;
}
/**
* Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the
* elements given.
*
* @param e0 the first element.
* @param e1 the second element.
* @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing
* {@code e0} and {@code e1}.
* @throws IllegalArgumentException if there were duplicate entries.
*/
public static IntHashSet of(final int e0, final int e1) {
IntHashSet result = new IntHashSet(2, DEFAULT_LOAD_FACTOR);
result.add(e0);
if (!result.add(e1)) {
throw new IllegalArgumentException("Duplicate element: " + e1);
}
return result;
}
/**
* Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the
* elements given.
*
* @param e0 the first element.
* @param e1 the second element.
* @param e2 the third element.
* @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing
* {@code e0}, {@code e1}, and {@code e2}.
* @throws IllegalArgumentException if there were duplicate entries.
*/
public static IntHashSet of(final int e0, final int e1, final int e2) {
IntHashSet result = new IntHashSet(3, DEFAULT_LOAD_FACTOR);
result.add(e0);
if (!result.add(e1)) {
throw new IllegalArgumentException("Duplicate element: " + e1);
}
if (!result.add(e2)) {
throw new IllegalArgumentException("Duplicate element: " + e2);
}
return result;
}
/**
* Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using a list of
* elements.
*
* @param a a list of elements that will be used to initialize the new hash set.
* @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing the
* elements of {@code a}.
* @throws IllegalArgumentException if a duplicate entry was encountered.
*/
public static IntHashSet of(final int... a) {
IntHashSet result = new IntHashSet(a.length, DEFAULT_LOAD_FACTOR);
for (int element : a) {
if (!result.add(element)) {
throw new IllegalArgumentException("Duplicate element " + element);
}
}
return result;
}
private int realSize() {
return containsNull ? size - 1 : size;
}
private void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n)
rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int) Math.min(1 << 30, Math.max(2, nextPowerOfTwo((long) Math.ceil(capacity / f))));
if (needed > n)
rehash(needed);
}
public void addAll(Collection<? extends Integer> c) {
// The resulting collection will be at least c.size() big
if (f <= .5)
ensureCapacity(c.size()); // The resulting collection will be sized for c.size()
// elements
else
tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized
// for size() + c.size() elements
for (Integer i : c) {
add(i);
}
}
/**
* Quickly mixes the bits of an integer.
*
* <p>
* This method mixes the bits of the argument by multiplying by the golden ratio and xorshifting
* the result. It is borrowed from <a href="https://github.com/OpenHFT/Koloboke">Koloboke</a>,
* and it has slightly worse behaviour than {@link #murmurHash3(int)} (in open-addressing hash
* tables the average number of probes is slightly larger), but it's much faster.
*
* @param x an integer.
* @return a hash value obtained by mixing the bits of {@code x}.
* @see #invMix(int)
*/
public static int mix(final int x) {
final int h = x * INT_PHI;
return h ^ (h >>> 16);
}
/**
* The inverse of {@link #mix(int)}. This method is mainly useful to create unit tests.
*
* @param x an integer.
* @return a value that passed through {@link #mix(int)} would give {@code x}.
*/
public static int invMix(final int x) {
return (x ^ x >>> 16) * INV_INT_PHI;
}
public boolean add(final int k) {
int pos;
if (k == 0) {
if (containsNull)
return false;
containsNull = true;
} else {
int curr;
final int[] key = this.key;
// The starting point.
if (!((curr = key[pos = (mix((k))) & mask]) == 0)) {
if (curr == k)
return false;
while (!((curr = key[pos = (pos + 1) & mask]) == 0))
if (((curr) == (k)))
return false;
}
key[pos] = k;
}
if (size++ >= maxFill)
rehash(arraySize(size + 1, f));
return true;
}
/**
* Shifts left entries with the specified hash code, starting at the specified position, and
* empties the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last;
int slot;
int curr;
final int[] key = this.key;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if (((curr = key[pos]) == (0))) {
key[last] = (0);
return;
}
slot = (mix((curr))) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos)
break;
pos = (pos + 1) & mask;
}
key[last] = curr;
}
}
private boolean removeEntry(final int pos) {
size--;
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return true;
}
private boolean removeNullEntry() {
containsNull = false;
key[n] = (0);
size--;
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return true;
}
public boolean remove(final int k) {
if (((k) == (0))) {
if (containsNull)
return removeNullEntry();
return false;
}
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (mix((k))) & mask]) == (0)))
return false;
if (((k) == (curr)))
return removeEntry(pos);
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0)))
return false;
if (((k) == (curr)))
return removeEntry(pos);
}
}
public boolean contains(final int k) {
if (((k) == (0)))
return containsNull;
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (mix((k))) & mask]) == (0)))
return false;
if (((k) == (curr)))
return true;
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0)))
return false;
if (((k) == (curr)))
return true;
}
}
/*
* Removes all elements from this set.
*
* <p>To increase object reuse, this method does not change the table size. If you want to
* reduce the table size, you must use {@link #trim()}.
*
*/
public void clear() {
if (size == 0)
return;
size = 0;
containsNull = false;
Arrays.fill(key, (0));
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
/**
* Rehashes this set, making the table as small as possible.
*
* <p>
* This method rehashes the table to the smallest size satisfying the load factor. It can be
* used when the set will not be changed anymore, so to optimize access speed and size.
*
* <p>
* If the table size is already the minimum possible, this method does nothing.
*
* @return true if there was enough memory to trim the set.
* @see #trim(int)
*/
public boolean trim() {
return trim(size);
}
/**
* Rehashes this set if the table is too large.
*
* <p>
* Let <var>N</var> be the smallest table size that can hold <code>max(n,{@link #size()})</code>
* entries, still satisfying the load factor. If the current table size is smaller than or equal
* to <var>N</var>, this method does nothing. Otherwise, it rehashes this set in a table of size
* <var>N</var>.
*
* <p>
* This method is useful when reusing sets. {@linkplain #clear() Clearing a set} leaves the
* table size untouched. If you are reusing a set many times, you can call this method with a
* typical size to avoid keeping around a very large table just because of a few large transient
* sets.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the set.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = nextPowerOfTwo((int) Math.ceil(n / f));
if (l >= this.n || size > maxFill(l, f))
return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes the set.
*
* <p>
* This method implements the basic rehashing strategy, and may be overriden by subclasses
* implementing different rehashing strategies (e.g., disk-based rehashing). However, you should
* not override this method unless you understand the internal workings of this class.
*
* @param newN the new size
*/
protected void rehash(final int newN) {
final int key[] = this.key;
final int mask = newN - 1; // Note that this is used by the hashing macro
final int newKey[] = new int[newN + 1];
int i = n, pos;
for (int j = realSize(); j-- != 0;) {
while (((key[--i]) == (0)))
;
if (!((newKey[pos = (mix((key[i]))) & mask]) == (0)))
while (!((newKey[pos = (pos + 1) & mask]) == (0)))
;
newKey[pos] = key[i];
}
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
}
/**
* Returns a deep copy of this set.
*
* <p>
* This method performs a deep copy of this hash set; the data stored in the set, however, is
* not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this set.
*/
@Override
public IntHashSet clone() {
IntHashSet c;
try {
c = (IntHashSet) super.clone();
} catch (CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.key = key.clone();
c.containsNull = containsNull;
return c;
}
/**
* Returns a hash code for this set.
*
* This method overrides the generic method provided by the superclass. Since {@code equals()}
* is not overriden, it is important that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this set.
*/
@Override
public int hashCode() {
int h = 0;
for (int j = realSize(), i = 0; j-- != 0;) {
while (((key[i]) == (0)))
i++;
h += (key[i]);
i++;
}
// Zero / null have hash zero.
return h;
}
/**
* Returns the least power of two greater than or equal to the specified value.
*
* <p>
* Note that this function will return 1 when the argument is 0.
*
* @param x an integer smaller than or equal to 2<sup>30</sup>.
* @return the least power of two greater than or equal to the specified value.
*/
public static int nextPowerOfTwo(int x) {
if (x == 0)
return 1;
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
return (x | x >> 16) + 1;
}
/**
* Returns the least power of two greater than or equal to the specified value.
*
* <p>
* Note that this function will return 1 when the argument is 0.
*
* @param x a long integer smaller than or equal to 2<sup>62</sup>.
* @return the least power of two greater than or equal to the specified value.
*/
public static long nextPowerOfTwo(long x) {
if (x == 0)
return 1;
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return (x | x >> 32) + 1;
}
/**
* Ensures that a range given by an offset and a length fits an array of given length.
*
* <p>
* This method may be used whenever an array range check is needed.
*
* <p>
* In Java 9 and up, this method should be considered deprecated in favor of the
* {@link java.util.Objects#checkFromIndexSize(int, int, int)} method, which may be intrinsified
* in recent JVMs.
*
* @param arrayLength an array length.
* @param offset a start index for the fragment
* @param length a length (the number of elements in the fragment).
* @throws IllegalArgumentException if {@code length} is negative.
* @throws ArrayIndexOutOfBoundsException if {@code offset} is negative or
* {@code offset}+{@code length} is greater than {@code arrayLength}.
*/
public static void ensureOffsetLength(final int arrayLength, final int offset, final int length) {
// When Java 9 becomes the minimum, use Objects#checkFromIndexSize, as that can be an
// intrinsic
if (offset < 0)
throw new ArrayIndexOutOfBoundsException("Offset (" + offset + ") is negative");
if (length < 0)
throw new IllegalArgumentException("Length (" + length + ") is negative");
if (offset + length > arrayLength)
throw new ArrayIndexOutOfBoundsException("Last index (" + (offset + length) + ") is greater than array length (" + arrayLength + ")");
}
}