Dépôt officiel du code source de l'ERP OpenConcerto
Rev 142 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
*
* Copyright 2011 OpenConcerto, by ILM Informatique. All rights reserved.
*
* The contents of this file are subject to the terms of the GNU General Public License Version 3
* only ("GPL"). You may not use this file except in compliance with the License. You can obtain a
* copy of the License at http://www.gnu.org/licenses/gpl-3.0.html See the License for the specific
* language governing permissions and limitations under the License.
*
* When distributing the software, include this License Header Notice in each file.
*/
package org.openconcerto.utils;
import org.openconcerto.utils.convertor.NumberConvertor;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.Collections;
import java.util.EnumSet;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
public class NumberUtils {
/**
* Test class and numerical equality. E.g. {@link BigDecimal#equals(Object)} also tests the
* scale.
*
* @param <N> type of number.
* @param n1 first number, can be <code>null</code>.
* @param n2 second number, can be <code>null</code>.
* @return <code>true</code> if <code>n1</code> and <code>n2</code> have the same class and are
* numerically equal.
* @see #areNumericallyEqual(Number, Number)
*/
static public final <N extends Number> boolean areEqual(final N n1, final N n2) {
if (n1 == null && n2 == null)
return true;
if (n1 == null || n2 == null)
return false;
final Class<? extends Number> n1Class = n1.getClass();
if (n1Class != n2.getClass())
return false;
// Atomic* don't implement equals()
if (n1Class == AtomicInteger.class || n1Class == AtomicLong.class)
return n1.longValue() == n2.longValue();
else if (n1Class == BigDecimal.class)
return ((BigDecimal) n1).compareTo((BigDecimal) n2) == 0;
else
return n1.equals(n2);
}
/**
* Test numerical equality (but ignore class).
*
* @param n1 first number, can be <code>null</code>.
* @param n2 second number, can be <code>null</code>.
* @return <code>true</code> if <code>n1</code> and <code>n2</code> are numerically equal.
* @see #compare(Number, Number)
*/
static public final boolean areNumericallyEqual(final Number n1, final Number n2) {
if (n1 == null && n2 == null)
return true;
if (n1 == null || n2 == null)
return false;
return compare(n1, n2) == 0;
}
/**
* Compare two arbitrary numbers.
*
* @param n1 first number, not <code>null</code>.
* @param n2 second number, not <code>null</code>.
* @return a negative integer, zero, or a positive integer as n1 is less than, equal to, or
* greater than n2.
* @see Comparable#compareTo(Object)
*/
static public final int compare(final Number n1, final Number n2) {
Class<? extends Number> biggerClass = getWiderClass(n1, n2);
// Atomic* aren't Comparable
if (biggerClass == AtomicInteger.class)
biggerClass = Integer.class;
else if (biggerClass == AtomicLong.class)
biggerClass = Long.class;
return compare(n1, n2, biggerClass);
}
static private final <N extends Number> int compare(final Number n1, final Number n2, Class<N> clazz) {
final N n1Converted = NumberConvertor.convertExact(n1, clazz);
final N n2Converted = NumberConvertor.convertExact(n2, clazz);
@SuppressWarnings("unchecked")
final Comparable<N> comparable = (Comparable<N>) n1Converted;
return comparable.compareTo(n2Converted);
}
/**
* Return a class wide enough for both numbers. E.g. for Integer and Short, Integer ; for
* BigInteger and Float, BigDecimal.
*
* @param n1 first number, not <code>null</code>.
* @param n2 second number, not <code>null</code>.
* @return a class wide enough for both numbers.
* @see NumberConvertor#convertExact(Number, Class)
*/
static public final Class<? extends Number> getWiderClass(final Number n1, final Number n2) {
final Class<? extends Number> n1Class = n1.getClass();
final Class<? extends Number> n2Class = n2.getClass();
if (n1Class == n2Class)
return n1Class;
if (n1Class == BigDecimal.class || n2Class == BigDecimal.class)
return BigDecimal.class;
final boolean n1isFloat = n1Class == Float.class || n1Class == Double.class;
final boolean n2isFloat = n2Class == Float.class || n2Class == Double.class;
if (n1isFloat && n2isFloat) {
// since classes are different, at least one is Double
return Double.class;
} else if (n1isFloat || n2isFloat) {
// the only class (except the already handled BigDecimal) that can overflow in a Double
// is BigInteger
if (n1Class == BigInteger.class || n2Class == BigInteger.class)
return BigDecimal.class;
else
return Double.class;
}
// integers or BigInteger
if (n1Class == BigInteger.class || n2Class == BigInteger.class)
return BigInteger.class;
else if (n1Class == Long.class || n2Class == Long.class || n1Class == AtomicLong.class || n2Class == AtomicLong.class)
return Long.class;
else if (n1Class == Integer.class || n2Class == Integer.class || n1Class == AtomicInteger.class || n2Class == AtomicInteger.class)
return Integer.class;
else if (n1Class == Short.class || n2Class == Short.class)
return Short.class;
else if (n1Class == Byte.class || n2Class == Byte.class)
return Byte.class;
else
throw new IllegalStateException("Unknown classes " + n1Class + " / " + n2Class);
}
/**
* Whether <code>n</code> has a non-zero fractional part.
*
* @param n a number.
* @return <code>true</code> if there is a non-zero fractional part, e.g. <code>true</code> for
* 1.3d and <code>false</code> for <code>new BigDecimal("1.00")</code>.
*/
static public final boolean hasFractionalPart(Number n) {
if (n instanceof Integer || n instanceof Long || n instanceof Short || n instanceof Byte || n instanceof BigInteger || n instanceof AtomicLong || n instanceof AtomicInteger)
return false;
final BigDecimal bd;
if (n instanceof BigDecimal)
bd = (BigDecimal) n;
else if (n instanceof Double || n instanceof Float)
bd = new BigDecimal(n.doubleValue());
else
bd = new BigDecimal(n.toString());
return DecimalUtils.decimalDigits(bd) > 0;
}
static final int MAX_LONG_LENGTH = String.valueOf(Long.MAX_VALUE).length();
static public final int intDigits(final long l) {
final long x = Math.abs(l);
long p = 10;
int i = 1;
while (x >= p && i < MAX_LONG_LENGTH) {
p = 10 * p;
i++;
}
return i;
}
/**
* The number of digits of the integer part in decimal representation.
*
* @param n a number, e.g. 123.45.
* @return the number of digits of the integer part, e.g. 3.
*/
static public final int intDigits(Number n) {
if (n instanceof Integer || n instanceof Long || n instanceof Short || n instanceof Byte || n instanceof AtomicLong || n instanceof AtomicInteger)
return intDigits(n.longValue());
final BigDecimal bd;
if (n instanceof BigDecimal)
bd = (BigDecimal) n;
else if (n instanceof BigInteger)
bd = new BigDecimal((BigInteger) n);
else if (n instanceof Double || n instanceof Float)
bd = new BigDecimal(n.doubleValue());
else
bd = new BigDecimal(n.toString());
return DecimalUtils.intDigits(bd);
}
/**
* High precision divide.
*
* @param n the dividend.
* @param d the divisor.
* @return <code>n / d</code>.
* @see DecimalUtils#HIGH_PRECISION
*/
static public Number divide(Number n, double d) {
if (d == 1)
return n;
if (n instanceof BigDecimal) {
return ((BigDecimal) n).divide(new BigDecimal(d), DecimalUtils.HIGH_PRECISION);
} else if (n instanceof BigInteger) {
return new BigDecimal((BigInteger) n).divide(new BigDecimal(d), DecimalUtils.HIGH_PRECISION);
} else {
return n.doubleValue() / d;
}
}
static public final int divideRoundUp(final int n, final int d) {
return divideRound(n, d, RoundingMode.UP);
}
static public final int divideRoundDown(final int n, final int d) {
return divideRound(n, d, RoundingMode.DOWN);
}
static public final int divideRoundCeiling(final int n, final int d) {
return divideRound(n, d, RoundingMode.CEILING);
}
static public final int divideRoundFloor(final int n, final int d) {
return divideRound(n, d, RoundingMode.FLOOR);
}
static final Set<RoundingMode> DIVIDE_SUPPORTED_MODES = Collections.unmodifiableSet(EnumSet.of(RoundingMode.UP, RoundingMode.DOWN, RoundingMode.CEILING, RoundingMode.FLOOR));
static final int divideRound(final int n, final int d, final RoundingMode mode) {
if (n == 0)
return 0;
final int mult;
if (mode == RoundingMode.DOWN) {
mult = 0;
} else if (mode == RoundingMode.UP) {
mult = signum(n) * (d - 1);
} else if (mode == RoundingMode.CEILING) {
// If the result is positive, behaves as for RoundingMode.UP; if negative, behaves as
// for RoundingMode.DOWN
mult = n > 0 ? (d - 1) : 0;
} else if (mode == RoundingMode.FLOOR) {
// If the result is positive, behave as for RoundingMode.DOWN; if negative, behave as
// for RoundingMode.UP
mult = n > 0 ? 0 : -(d - 1);
} else {
throw new UnsupportedOperationException();
}
return (n + mult) / d;
}
static public Number negate(Number n) {
if (n == null)
return null;
final Number res;
final Class<? extends Number> clazz = n.getClass();
if (n instanceof BigDecimal) {
res = ((BigDecimal) n).negate();
} else if (n instanceof BigInteger) {
res = ((BigInteger) n).negate();
} else if (clazz == Short.class) {
// cast needed since '-' widens to int
res = (short) -n.shortValue();
} else if (clazz == Integer.class) {
res = -n.intValue();
} else if (clazz == Long.class) {
res = -n.longValue();
} else if (clazz == Byte.class) {
// cast needed since '-' widens to int
res = (byte) -n.byteValue();
} else if (clazz == AtomicInteger.class) {
res = new AtomicInteger(-n.intValue());
} else if (clazz == AtomicLong.class) {
res = new AtomicLong(-n.longValue());
} else if (clazz == Double.class) {
res = -n.doubleValue();
} else if (clazz == Float.class) {
res = -n.floatValue();
} else {
// fallback for unknown class
res = new BigDecimal(n.toString()).negate();
}
return res;
}
static public int signum(final long l) {
final int res;
if (l == 0)
res = 0;
else if (l < 0)
res = -1;
else
res = 1;
return res;
}
static public int signum(Number n) {
if (n == null)
throw new NullPointerException();
final int res;
final Class<? extends Number> clazz = n.getClass();
if (n instanceof BigDecimal) {
res = ((BigDecimal) n).signum();
} else if (n instanceof BigInteger) {
res = ((BigInteger) n).signum();
} else if (clazz == Double.class) {
res = (int) Math.signum(n.doubleValue());
} else if (clazz == Float.class) {
res = (int) Math.signum(n.floatValue());
} else if (clazz == Byte.class || clazz == Short.class || clazz == Integer.class || clazz == Long.class || clazz == AtomicInteger.class || clazz == AtomicLong.class) {
res = signum(n.longValue());
} else {
// limit overflow for unknown class
res = (int) Math.signum(n.doubleValue());
}
return res;
}
// TODO use Math.toIntExact() in Java8
public static int ensureInt(long l) throws ArithmeticException {
if (l < Integer.MIN_VALUE || l > Integer.MAX_VALUE) {
throw new ArithmeticException("long value " + String.valueOf(l) + " cannot be cast to int without changing its value.");
}
return (int) l;
}
}